Jacob Brooks, National Conference on Undergraduate Research 2014

Using VPython Modeling to Design the Magnetics for an Artificial Cilia Platform
Poster at the National Conference on Undergraduate Research in Lexington, Kentucky

Cilia are a biological structure found in a variety of locations in the human body, including the brain, lungs, and kidneys. These cilia oscillate in a metachronal pattern, which causes a traveling wave to propagate through the cilia, moving fluids throughout the body. Improper cilia movement and function can cause seriously impair health and contribute to a variety of ciliopathies, including primary ciliary dyskinesia (PCD) and nephronophthisis (which causes kidney failure). Additionally, cilia malfunction can affect embryonic development and left-right asymmetry determination in humans. As cilia drive fluids to one side continuously, they initiate asymmetrical development. Metachronal wave patterns in cilia result in fluid flow, and to increase our understanding of the effect of the metachronal wave patterns, we are utilizing both a computer simulation and biomimetic cilia system. We hope to investigate cilia beat amplitude and frequency with an array of artificial cilia, where each cilium is a polymer rod with its upper portion surrounded by a magnetic tube. These cilia respond to the magnetic field from a permanent magnet moving above them. To construct a magnetic setup in our biomimetic system that results in metachronal waves arising in the cilia array, we developed a VPython computer program that simulates changing magnetic fields and the resulting cilia response. The program assumes artificial cilia align with the magnetic field, allowing us to explore a variety of magnet configurations to understand beat patterns before exploring the artificial system experimentally. The program outputs the tilt angle for each cilium, magnet position, and net magnetic field at each cilium location, as well as a 3-D visual model of the system. This output is used to inform our experiment, and results of the simulation and progress in the experimental investigation will both be discussed.