Nikki Sanford, BigSURS 2013

Simulation Studies of the Helium and Lead Observatory (HALO)
Presented at the 2013 BigSURS Meeting, High Point University

Simulation studies for were conducted for the Helium and Lead Observatory (HALO), the supernova neutrino detector at SNOLAB, Sudbury, Ontario. HALO consists of 79 tons of lead, with 128 3He counters which detect the scattered lead neutrons resulting from incoming neutrinos. Improvements were made to the Geant4 Monte Carlo simulation’s geometry by the addition of water boxes and plastic baseboards, which serve to reflect scattered neutrons back towards counters, and shield against outside neutrons and gammas. Several box designs were created, and the resulting event detection efficiencies and labeling of 1n and 2n events were studied. It was found that these additions cause a 2% efficiency increase, a slight improvement of correctly labeled events, and are a significant improvement to the HALO simulation.